Identification of a second transforming function in bovine papillomavirus type 1 E6 and the role of E6 interactions with paxillin, E6BP, and E6AP.
نویسندگان
چکیده
Papillomavirus E6 oncoproteins transform mammalian cells through interaction with cellular proteins. Bovine papillomavirus type 1 E6 (BE6) interacts with three previously described cellular targets: the E6AP E3 ubiquitin ligase, the calcium-binding protein E6BP (also known as ERC-55), and paxillin, which is a focal adhesion adapter protein. BE6 interacts strongly with each of these proteins in vitro, binding to similar peptide sequences found in E6AP, E6BP, and paxillin. To determine which BE6 interactions are necessary for transformation by BE6, we used a novel selection strategy for temperature-sensitive BE6 mutants in yeast that could discriminate in their interaction between E6AP, E6BP, and paxillin. All BE6 mutants that retained transforming ability retained association with paxillin, while some mutants that were transformation positive failed to interact with E6AP or E6BP. This study demonstrates that oncogene mutants that are temperature sensitive for transformation can be selected in yeast and that the induction of anchorage-independent cell proliferation by BE6 does not require strong association of BE6 with either E6AP or E6BP. Of particular interest is the identification of a BE6 mutant that interacts strongly with the acidic charged leucine motifs of E6AP, E6BP, and paxillin but is devoid of transformation activity, thereby genetically identifying a second essential transformation function in BE6 that is independent of interaction with acidic charged leucine motifs.
منابع مشابه
Transformation by bovine papillomavirus type 1 E6 requires paxillin.
Papillomavirus E6 proteins are adapters that change the function of cellular regulatory proteins. The bovine papillomavirus type 1 E6 (BE6) binds to LXXLL peptide sequences termed LD motifs (consensus sequence LDXLLXXL) on the cellular protein paxillin that is a substrate of Src and focal adhesion kinases. Anchorage-independent transformation induced by BE6 required both paxillin and BE6-bindin...
متن کاملIn silico analyzing the molecular interactions of plant-derived inhibitors against E6AP, p53, and c-Myc binding sites of HPV type 16 E6 oncoprotein
Human papillomaviruses (HPV) are a group of strong human carcinogen viruses considered to be the fourth leading cause of mortality among women in the world. HPV is the most important cause of cervical cancer, which is the second most common cancer in women living in low and middle-income countries. To date, there is no effective cure for an ongoing HPV infection; therefore, it is required to in...
متن کاملIntracellular Analysis of the Interaction between the Human Papillomavirus Type 16 E6 Oncoprotein and Inhibitory Peptides
Oncogenic types of human papillomaviruses (HPVs) cause cervical cancer and other malignancies in humans. The HPV E6 oncoprotein is considered to be an attractive therapeutic target since its inhibition can lead to the apoptotic cell death of HPV-positive cancer cells. The HPV type 16 (HPV16) E6-binding peptide pep11, and variants thereof, induce cell death specifically in HPV16-positive cancer ...
متن کاملHuman papillomavirus type 16 E6 induces self-ubiquitination of the E6AP ubiquitin-protein ligase.
The E6 protein of the high-risk human papillomaviruses (HPVs) and the cellular ubiquitin-protein ligase E6AP form a complex which causes the ubiquitination and degradation of p53. We show here that HPV16 E6 promotes the ubiquitination and degradation of E6AP itself. The half-life of E6AP is shorter in HPV-positive cervical cancer cells than in HPV-negative cervical cancer cells, and E6AP is sta...
متن کاملBinding of human papillomavirus type 16 E6 to E6AP is not required for activation of hTERT.
The human papillomavirus (HPV) type 16 (HPV16) E6 protein stimulates transcription of the catalytic subunit of telomerase, hTERT, in epithelial cells. It has been reported that binding to the ubiquitin ligase E6AP is required for this E6 activity, with E6 directing E6AP to the hTERT promoter. We previously reported two E6AP binding-defective HPV16 E6 mutations that induced immortalization of hu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of virology
دوره 74 2 شماره
صفحات -
تاریخ انتشار 2000